Spruce Gall Midge

Mayetiola piceae (Felt) Diptera: Cecidomyiidae

Brandt, J. P. 2000. A sequential sampling plan for classification of damage caused by spruce gall midge (*Mayetiola piceae* [Felt]). Forest Management Note 65. Edmonton, Alberta, Canada: Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre; 7 p.

Objective: To develop a sequential sampling plan for classifying *M. piceae* damage on white spruce as light, moderate, or severe.

Abstract: The spruce gall midge, *Mayetiola piceae* (Felt), is a periodically severe pest of white spruce, *Picea glauca* (Moench) Voss, in Canada and the northern U.S. Larvae bore into new shoots, causing a noticeable gall in as little as 10 days. Damage by *M. piceae* is seen as reduced growth, deformation, and eventual mortality of twigs. Very little is known about *M. piceae*, except for work published by Felt (1926) and Smith (1952). A sequential sampling plan was devised to classify populations into categories based on the number of galled current-year shoots.

The type I and II errors for sequential sampling were set at 10% such that there was a 1 in 10 chance that the classification was inappropriate. Populations of *M. piceae* were classified as light, moderate and severe if the mean number of galled current-year shoots per branch was ≤ 3 , 4 to 16, and ≥ 24 , respectively. At least 28 uninfested trees must be sampled to classify a site as having light damage, but sites could be classified as having severe damage after sampling fewer trees.

Sampling Procedure: Sample white spruces when galls are visible on current-year shoots. Randomly select stands from the area of concern, as well as trees from the stands of concern and branches from sample trees. Select only dominant or co-dominant trees along a transect with a random start location. From each tree along the transect, remove one branch from each of the lower, middle, and upper crown. Also remove an additional branch from a crown level that is selected at random.

Average the number of galls among the four branches and reference Table I. If the cumulative number of galled current year shoots remains within the continue sampling bands, select the next tree and sample four branches as described above. Add this total to the previous one and reference Table I. Stop sampling if the cumulative total is outside of the continue sampling bands and classify populations appropriately. If the cumulative total remains within the continue sampling 300 trees, classify populations as light-moderate. If the count remains within the continue sampling band that delineates the moderate and severe population levels after counting 2,000 galls, classify populations as moderate-severe.

Note: This plan was not validated with data from other areas of Canada or the USA and should be used with caution until it has been validated for other regions. Although sequential sampling can substantially save time and effort, the plan outlined here quickly becomes labor intensive when *M. piceae* populations fall between the light to moderate ranges.

References:

- Felt, E. P. 1926. A new spruce gall midge (Itonidae). Canadian Entomologist 58: 229-230.
- Smith, C. C. 1952. The life-history and galls of a spruce gall midge, *Phytophaga piceae* Felt (Diptera: Cecidomyiidae). Canadian Entomologist 84: 272-275.

Table

Table I. Decision values of the *M. piceae* sequential sampling plan. Counts are the accumulation of the average number of galls pooled from a four-branch sample per tree.

						> Value =
Number of	< Value = light		In between values =			severe
trees sampled	population		moderate population			population
5						468
10						568
15						669
20						769
25						870
30	8		202	263		970
35	26		220	337		1071
40	43		237	437		1171
45	61		255	538		1272
50	78		272	638		1372
55	96		290	739		1473
60	113		307	839		1573
65	131		325	940		1674
70	148		342	1040		1774
75	166		360	1141		1875
80	183		377	1241		1975
85	201	00	395	1342	00	2076
90	218	ing	412	1442	ing	2176
95	236	ld	430	1543	lq	2277
100	253	ап	447	1643	an	2377
105	271	S	465	1744	S	2478
110	288	nu	482	1844) N	2578
115	306	tir	500	1945	tir	2679
120	323	UO LO	517	2045	UO LO	2779
125	341	U	535	2146	U	2880

130	358	552	2246	2980
135	376	570	2347	3081
140	393	587	2447	3181
145	411	605	2548	3282
150	428	622	2648	3382
155	446	640	2749	3483
160	463	657	2849	3583
165	481	675	2950	3684
170	498	692	3050	3784
175	516	710	3151	3885
180	533	727	3251	3985
185	551	745	3352	4086
190	568	762	3452	4186
195	586	780	3553	4287
200	603	797	3653	4387
205	621	815	3754	4488
210	638	832	3854	4588
215	656	850	3955	4689
220	673	867	4055	4789
225	691	885	4156	4890
230	708	902	4256	4990
235	726	920	4357	5091
240	743	937	4457	5191
245	761	955	4558	5292
250	778	972	4658	5392
255	796	990	4759	5493
260	813	1007	4859	5593
265	831	1025	4960	5694
270	848	1042	5060	5794
275	866	1060	5161	5895
280	883	1077	5261	5995
285	901	1095	5362	6096
290	918	1112	5462	6196
295	936	1130	5563	6297
300	953	1147	5663	6397

Table generated from equations listed in Fig. 2 of the original publication